Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell Death Dis ; 14(8): 570, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640747

RESUMO

Retinal ganglion cells (RGCs), the sole output neurons in the eyes, are vulnerable to diverse insults in many pathological conditions, which can lead to permanent vision dysfunction. However, the molecular and cellular mechanisms that contribute to protecting RGCs and their axons from injuries are not completely known. Here, we identify that Porf-2, a member of the Rho GTPase activating protein gene group, is upregulated in RGCs after optic nerve crush. Knockdown of Porf-2 protects RGCs from apoptosis and promotes long-distance optic nerve regeneration after crush injury in both young and aged mice in vivo. In vitro, we find that inhibition of Porf-2 induces axon growth and growth cone formation in retinal explants. Inhibition of Porf-2 provides long-term and post-injury protection to RGCs and eventually promotes the recovery of visual function after crush injury in mice. These findings reveal a neuroprotective impact of the inhibition of Porf-2 on RGC survival and axon regeneration after optic nerve injury, providing a potential therapeutic strategy for vision restoration in patients with traumatic optic neuropathy.


Assuntos
Lesões por Esmagamento , Traumatismos do Nervo Óptico , Traumatismos dos Nervos Periféricos , Animais , Camundongos , Traumatismos do Nervo Óptico/genética , Axônios , Regeneração Nervosa , Retina , Nervo Óptico , Células Ganglionares da Retina , Lesões por Esmagamento/genética
2.
Front Cell Neurosci ; 17: 1145574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293627

RESUMO

Traumatic optic neuropathy (TON) is a condition that causes massive loss of retinal ganglion cells (RGCs) and their axonal fibers, leading to visual insufficiency. Several intrinsic and external factors can limit the regenerative ability of RGC after TON, subsequently resulting in RGC death. Hence, it is important to investigate a potential drug that can protect RGC after TON and enhance its regenerative capacity. Herein, we investigated whether Huperzine A (HupA), extracted from a Chinese herb, has neuroprotective effects and may enhance neuronal regeneration following the optic nerve crush (ONC) model. We compared the three modes of drug delivery and found that intravitreal injection of HupA could promote RGC survival and axonal regeneration after ONC. Mechanistically, HupA exerted its neuroprotective and axonal regenerative effects through the mTOR pathway; these effects could be blocked by rapamycin. To sum up, our findings suggest a promising application of HupA in the clinical treatment of traumatic optic nerve.

3.
Neuroimage Clin ; 37: 103361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36871404

RESUMO

OBJECTIVE: We aimed to explore the pathogenesis of traumatic coma related to functional connectivity (FC) within the default mode network (DMN), within the executive control network (ECN) and between the DMN and ECN and to investigate its capacity for predicting awakening. METHODS: We carried out resting-state functional magnetic resonance imaging (fMRI) examinations on 28 traumatic coma patients and 28 age-matched healthy controls. DMN and ECN nodes were split into regions of interest (ROIs), and node-to-node FC analysis was conducted on individual participants. To identify coma pathogenesis, we compared the pairwise FC differences between coma patients and healthy controls. Meanwhile, we divided the traumatic coma patients into different subgroups based on their clinical outcome scores at 6 months postinjury. Considering the awakening prediction, we calculated the area under the curve (AUC) to evaluate the predictive ability of changed FC pairs. RESULTS: We found a massive pairwise FC alteration in the patients with traumatic coma compared to the healthy controls [45% (33/74) pairwise FC located in the DMN, 27% (20/74) pairwise FC located in the ECN, and 28% (21/74) pairwise FC located between the DMN and ECN]. Moreover, in the awake and coma groups, there were 67% (12/18) pairwise FC alterations located in the DMN and 33% (6/18) pairwise FC alterations located between the DMN and ECN. We also indicated that pairwise FC that showed a predictive value of 6-month awakening was mainly located in the DMN rather than in the ECN. Specifically, decreased FC between the right superior frontal gyrus and right parahippocampal gyrus (in the DMN) showed the highest predictive ability (AUC = 0.827). CONCLUSION: In the acute phase of severe traumatic brain injury (sTBI), the DMN plays a more prominent role than the ECN and the DMN-ECN interaction in the emergence of traumatic coma and the prediction of 6-month awakening.


Assuntos
Lesões Encefálicas Traumáticas , Coma Pós-Traumatismo da Cabeça , Humanos , Coma/diagnóstico por imagem , Coma/etiologia , Função Executiva , Rede de Modo Padrão , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
4.
J Comput Assist Tomogr ; 46(5): 800-807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35650015

RESUMO

OBJECTIVE: In this study, we investigate the preoperative and postoperative computed tomography (CT) scores in severe traumatic brain injury (TBI) patients undergoing decompressive craniectomy (DC) and compare their predictive accuracy. METHODS: Univariate and multivariate logistic regression analyses were used to determine the relationship between CT score (preoperative and postoperative) and mortality at 30 days after injury. The discriminatory power of preoperative and postoperative CT score was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS: Multivariate logistic regression analysis adjusted for the established predictors of TBI outcomes showed that preoperative Rotterdam CT score (odds ratio [OR], 3.60; 95% confidence interval [CI], 1.13-11.50; P = 0.030), postoperative Rotterdam CT score (OR, 4.17; 95% CI, 1.63-10.66; P = 0.003), preoperative Stockholm CT score (OR, 3.41; 95% CI, 1.42-8.18; P = 0.006), postoperative Stockholm CT score (OR, 4.50; 95% CI, 1.60-12.64; P = 0.004), preoperative Helsinki CT score (OR, 1.44; 95% CI, 1.03-2.02; P = 0.031), and postoperative Helsinki CT score (OR, 2.55; 95% CI, 1.32-4.95; P = 0.005) were significantly associated with mortality. The performance of the postoperative Rotterdam CT score was superior to the preoperative Rotterdam CT score (AUC, 0.82-0.97 vs 0.71-0.91). The postoperative Stockholm CT score was superior to the preoperative Stockholm CT score (AUC, 0.76-0.94 vs 0.72-0.92). The postoperative Helsinki CT score was superior to the preoperative Helsinki CT score (AUC, 0.88-0.99 vs 0.65-0.87). CONCLUSIONS: In conclusion, assessing the CT score before and after DC may be more precise and efficient for predicting early mortality in severe TBI patients who undergo DC.


Assuntos
Lesões Encefálicas Traumáticas , Craniectomia Descompressiva , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/cirurgia , Craniectomia Descompressiva/métodos , Humanos , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
5.
Exp Neurol ; 348: 113948, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902358

RESUMO

Retinal ganglion cells (RGCs) are the sole output neurons that carry visual information from the eye to the brain. Due to various retinal and optic nerve diseases, RGC somas and axons are vulnerable to damage and lose their regenerative capacity. A basic question is whether the manipulation of a key regulator of RGC survival can protect RGCs from retinal and optic nerve diseases. Here, we found that Maf1, a general transcriptional regulator, was upregulated in RGCs from embryonic stage to adulthood. We determined that the knockdown of Maf1 promoted the survival of RGCs and their axon regeneration through altering the activity of the PTEN/mTOR pathway, which could be blocked by rapamycin. We further observed that the inhibition of Maf1 prevented the retinal ganglion cell complex from thinning after optic nerve crush. These findings reveal a neuroprotective effect of knocking down Maf1 on RGC survival after injury and provide a potential therapeutic strategy for traumatic optic neuropathy.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Células Ganglionares da Retina/fisiologia , Animais , Sobrevivência Celular/fisiologia , Técnicas de Silenciamento de Genes/métodos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Proteínas Repressoras/biossíntese
6.
Front Cell Neurosci ; 15: 800154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082604

RESUMO

The function of glial cells in axonal regeneration after injury has been the subject of controversy in recent years. Thus, deeper insight into glial cells is urgently needed. Many studies on glial cells have elucidated the mechanisms of a certain gene or cell type in axon regeneration. However, studies that manipulate a single variable may overlook other changes. Here, we performed a series of comprehensive transcriptome analyses of the optic nerve head over a period of 90 days after optic nerve crush (ONC), showing systematic molecular changes in the optic nerve head (ONH). Furthermore, using weighted gene coexpression network analysis (WGCNA), we established gene module programs corresponding to various pathological events at different times post-ONC and found hub genes that may be potential therapeutic targets. In addition, we analyzed the changes in different glial cells based on their subtype markers. We revealed that the transition trend of different glial cells depended on the time course, which provides clues for modulating glial function in further research.

7.
Mol Psychiatry ; 26(8): 3956-3969, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31772302

RESUMO

Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.


Assuntos
Região CA3 Hipocampal/fisiologia , Memória , Receptores de N-Metil-D-Aspartato , Comportamento Social , Ubiquitina-Proteína Ligases , Animais , Transtornos da Memória/genética , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
8.
Cell Death Dis ; 11(7): 606, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732865

RESUMO

Maf1, a general transcriptional regulator and mTOR downstream effector, is highly expressed in the hippocampus and cortex, but the function of Maf1 in neurons is not well elucidated. Here, we first demonstrate that Maf1 plays a central role in the inhibition of dendritic morphogenesis and the growth of dendritic spines both in vitro and in vivo. Furthermore, Maf1 downregulation paradoxically leads to activation of AKT-mTOR signaling, which is mediated by decreased PTEN expression. Moreover, we confirmed that Maf1 could regulate the activity of PTEN promoter by luciferase reporter assay, and proved that Maf1 could bind to the promoter of PTEN by ChIP-PCR experiment. We also demonstrate that expression of Maf1 in the hippocampus affects learning and memory in mice. Taken together, we show for the first time that Maf1 inhibits dendritic morphogenesis and the growth of dendritic spines through AKT-mTOR signaling by increasing PTEN expression.


Assuntos
Dendritos/metabolismo , Memória , Morfogênese , Proteínas Repressoras/metabolismo , Animais , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Células HEK293 , Hipocampo/patologia , Humanos , Memória/efeitos dos fármacos , Camundongos Endogâmicos ICR , Morfogênese/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
9.
Transl Neurodegener ; 9(1): 18, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398165

RESUMO

BACKGROUND: Neuropsychiatric symptoms (NPS) such as depression, anxiety, apathy, and irritability occur in prodromal phases of clinical Alzheimer's disease (AD), which might be an increased risk for later developing AD. Here we treated young APP/PS1 AD model mice prophylactically with serotonin-selective re-uptake inhibitor (SSRI) paroxetine and investigated the protective role of anti-depressant agent in emotional abnormalities and cognitive defects during disease progress. METHODS: To investigate the protective role of paroxetine in emotional abnormalities and cognitive defects during disease progress, we performed emotional behaviors of 3 months old APP/PS1 mouse following oral administration of paroxetine prophylactically starting at 1 month of age. Next, we tested the cognitive, biochemical and pathological, effects of long term administration of paroxetine at 6 months old. RESULTS: Our results showed that AD mice displayed emotional dysfunction in the early stage. Prophylactic administration of paroxetine ameliorated the initial emotional abnormalities and preserved the eventual memory function in AD mice. CONCLUSION: Our data indicate that prophylactic administration of paroxetine ameliorates the emotional dysfunction and memory deficit in AD mice. These neuroprotective effects are attributable to functional restoration of glutamate receptor (GluN2A) in AD mice.


Assuntos
Sintomas Afetivos/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Paroxetina/uso terapêutico , Sintomas Prodrômicos , Sintomas Afetivos/genética , Sintomas Afetivos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/metabolismo , Paroxetina/metabolismo , Presenilina-1/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Fatores de Tempo
10.
Br J Neurosurg ; 34(3): 284-289, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32090624

RESUMO

Background: Pneumocephalus is a common finding after burr-hole drainage of chronic subdural hematoma (CSDH). Its effects have not been specifically studied.Methods: A retrospective analysis was performed in 140 patients with CSDH with single burr-hole drainage. The pre- and postoperative volumes of intracranial hematoma and the postoperative volume of pneumocephalus were calculated and analyzed with their relationships with Glasgow Coma Scale (GCS) and Glasgow Outcome Scale (GOS) scores.Results: The preoperative hematoma volume and the patient ages are positively correlated with the 1-day postoperative pneumocephalus volume (p < 0.001, p < 0.01). There is no correlation between postoperative pneumocephalus volume and GCS/GOS scores (p > 0.05) and there is no difference of GCS/GOS scores or CSDH recurrence rate between patients with and without pneumocephalus (p > 0.05). The age and the volume of 1-day postoperative pneumocephalus are positively correlated with the absorbing rate of pneumocephalus (p < 0.01, p < 0.001).Conclusions: The pneumocephalus at a certain range has no effect on the prognosis of patients with CSDH and requires no specific intervention due to its self-absorbing capacity in the normal progress after surgery.HighlightsNo correlation between postoperative pneumocephalus volume and GCS/GOS scores.No difference of GCS/GOS or recurrence between patients with pneumocephalus or not.Pneumocephalus at certain range has no effect on the prognosis of patients.


Assuntos
Hematoma Subdural Crônico , Pneumocefalia , Drenagem , Hematoma Subdural Crônico/cirurgia , Humanos , Pacientes , Recidiva , Estudos Retrospectivos , Resultado do Tratamento , Trepanação
11.
Exp Neurol ; 328: 113253, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32084454

RESUMO

Our recent study investigated the role of collapsin response mediator protein-2 (CRMP2) on dendritic spine morphology and memory function after traumatic brain injury (TBI). First, we examined the density and morphology of dendritic spines in Thy1-GFP mice on the 1 st day (P1D) and 7th day (P7D) after controlled cortical impact injury (CCI). The dendritic spine density in the hippocampus was decreased on P1D, in which mainly mushroom-type and thin-type spines were lost. The density of dendritic spines was increased on P7D, most of which were of the thin type. Next, we explored the expression of CRMP2 on P1D and P7D. CRMP2 expression was decreased on P1D, but the levels of the CRMP2 breakdown product were increased. On P7D, the expression pattern was the opposite. Then, we constructed CRMP2 overexpression and knockdown plasmids and transfected them into cultured neurons in vitro. CRMP2 increased the dendritic spine density of cultured neurons and the proportion of mushroom-type spines, while CRMP2-shRNA reduced the dendritic spine density and the proportion of mushroom-type spines. To determine the role of CRMP2 in dendritic spines after TBI, we stereotactically injected the CRMP2 overexpression and knockdown viruses into the hippocampus and found that CRMP2 increased the dendritic spine density and the proportion of mushroom-type spines after TBI. Meanwhile, as suggested by the morphological changes, fear conditioning behavioral experiments confirmed that CRMP2 improved memory deficits after TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Espinhas Dendríticas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transtornos da Memória/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Transtornos da Memória/etiologia , Camundongos , Recuperação de Função Fisiológica/fisiologia
12.
Exp Cell Res ; 383(2): 111546, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31398352

RESUMO

Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and significantly contributes to cognitive deficits. The mechanisms that underlie these cognitive deficits are often associated with complex molecular alterations. α7nAChR, one of the abundant and widespread nicotinic acetylcholine receptors (nAChRs) in the brain, plays important physiological functions in the central nervous system. However, the relationship between temporospatial alterations in the α7nAChR and DAI-related learning and memory dysfunction are not completely understood. Our study detected temporospatial alterations of α7nAChR in vulnerable areas (hippocampus, internal capsule, corpus callosum and brain stem) of DAI rats and evaluated the development and progression of learning and memory dysfunction via the Morris water maze (MWM). We determined that α7nAChR expression in vulnerable areas was mainly reduced at the recovery of DAI in rats. Moreover, the escape latency of the injured group increased significantly and the percentages of the distance travelled and time spent in the target quadrant were significantly decreased after DAI. Furthermore, α7nAChR expression in the vulnerable area was significantly positively correlated with MWM performance after DAI according to regression analysis. In addition, we determined that a selective α7nAChR agonist significantly improved learning and memory dysfunction. Rats in the α7nAChR agonist group showed better learning and memory performance than those in the antagonist group. These results demonstrate that microstructural injury-induced alterations of α7nAChR in the vulnerable area are significantly correlated with learning and memory dysfunctions after DAI and that augmentation of the α7nAChR level by its agonist contributes to the improvement of learning and memory function.


Assuntos
Aconitina/análogos & derivados , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Disfunção Cognitiva/psicologia , Lesão Axonal Difusa/psicologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Aconitina/farmacologia , Animais , Benzamidas/uso terapêutico , Compostos Bicíclicos com Pontes/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Lesão Axonal Difusa/complicações , Lesão Axonal Difusa/tratamento farmacológico , Lesão Axonal Difusa/patologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
13.
Sci Adv ; 5(2): eaav4416, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30820459

RESUMO

The quiescence of radial neural stem cells (rNSCs) in adult brain is regulated by environmental stimuli. However, little is known about how the neurogenic niche couples the external signal to regulate activation and transition of quiescent rNSCs. Here, we reveal that long-term excitation of hippocampal dentate granule cells (GCs) upon voluntary running leads to activation of adult rNSCs in the subgranular zone and thereby generation of newborn neurons. Unexpectedly, the role of these excited GC neurons in NSCs depends on direct GC-rNSC interaction in the local niche, which is through down-regulated ephrin-B3, a GC membrane-bound ligand, and attenuated transcellular EphB2 kinase-dependent signaling in the adjacent rNSCs. Furthermore, constitutively active EphB2 kinase sustains the quiescence of rNSCs during running. These findings thus elucidate the physiological significance of GC excitability on adult rNSCs under external environments and indicate a key-lock switch regulation via cell-cell contact for functional transition of rNSCs.


Assuntos
Comunicação Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fase de Repouso do Ciclo Celular , Potenciais de Ação , Animais , Biomarcadores , Diferenciação Celular , Células Cultivadas , Giro Denteado/citologia , Giro Denteado/metabolismo , Regulação da Expressão Gênica , Hipocampo , Camundongos , Modelos Biológicos , Neurogênese , Corrida , Transdução de Sinais
14.
Exp Cell Res ; 375(2): 10-19, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639060

RESUMO

BACKGROUND: Müller cell gliosis not only plays an important physiological role by maintaining retinal neuronal homeostasis but is also associated with multiple pathological events in the retina, including optic nerve crush (ONC) injury. Modulating Müller cell gliosis contributes to the creation of a permissive environment for neuronal survival. However, the underlying mechanism of Müller cell gliosis has remained elusive. OBJECTIVE: To investigate the underlying mechanism of Müller cell gliosis after ONC. METHODS: Rats with ONC injury were transfected with miRNA-21 (miR-21) agomir (overexpressing miR-21) or antagomir (inhibiting miR-21) via intravitreous injection. Immunofluorescence and western blotting were performed to confirm the effects of miR-21 on Müller cell gliosis. The retinal nerve fiber layer (RNFL) thickness was measured using optical coherence tomography and the positive scotopic threshold response (pSTR) was recorded using electroretinogram. RESULTS: In the acute phase (14 days) after ONC, compared with the crushed group, inhibiting miR-21 promoted Müller cell gliosis, exhibiting thicker processes and increased GFAP expression. In the chronic phase (35 days), inhibiting miR-21 ameliorated Müller cell gliosis, which exhibited thicker and denser processes and increased GFAP expression. Retinal ganglion cell (RGC) counts in retinas showed that the number of surviving RGCs increased significantly in the antagomir group. The thickness of the RNFL increased significantly, and pSTR showed significant preservation of the amplitudes in the antagomir group. CONCLUSIONS: Inhibition of miR-21 promotes RGC survival, RNFL thickness and the recovery of RGC function by modulating Müller cell gliosis after ONC.


Assuntos
Células Ependimogliais/metabolismo , Gliose/metabolismo , MicroRNAs/genética , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Gliose/etiologia , Gliose/genética , Masculino , MicroRNAs/metabolismo , Compressão Nervosa , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/genética , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/fisiologia
15.
Front Neurosci ; 13: 1417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038131

RESUMO

Repetitive traumatic brain injury (rTBI) is a major health care concern that causes substantial neurological impairment. To better understand rTBI, we introduced a new model of rTBI in mice induced by sudden rotation in the coronal plane combined with lateral translation delivered twice at an interval of 24 h. By routine histology, histological examination of Prussian blue-stained sections revealed the presence of microbleed in the corpus callosum and brain stem. Amyloid precursor protein (ß-APP) and neurofilament heavy-chain (NF-200) immunohistochemistry demonstrated axonal injury following rTBI. Swelling, waving, and enlargement axons were observed in the corpus callosum and brain stem 24 h after injury by Bielschowsky staining. Ultrastructural studies by electron microscopy provided further insights into the existence and progression of axonal injury. rTBI led to widespread astrogliosis and microgliosis in white matter, as well as significantly increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß. rTBI mice showed a significantly increased loss of righting reflex (LRR) duration within each time point compared with that of sham animals, which was under 15 min. rTBI mice exhibited depression-like behavior at 1 month. rTBI mice also demonstrated deficits in MWM testing. These results suggested that this model might be suitable for investigating rTBI pathophysiology and evaluating preclinical candidate therapeutics.

16.
J Neurotrauma ; 36(11): 1856-1868, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30582423

RESUMO

Diffuse axonal injury (DAI) is accompanied frequently by adverse sequelae and psychiatric disorders, such as anxiety, leading to a decreased quality of life, social isolation, and poor outcomes in patients. The mechanisms regulating psychiatric disorders post-DAI are not well elucidated, however. Previous studies showed that endoplasmic reticulum (ER) stress functions as a pivotal factor in neurodegeneration disease. In this study, we showed that DAI can trigger ER stress and unfolded protein response (UPR) activation in both the acute and chronic periods, leading to cell death and anxiety disorder. Treatment with 4-phenylbutyrate (4-PBA) is able to inhibit the UPR and cell apoptosis and relieve the anxiety disorder in our DAI model. Later (14 days post-DAI) 4-PBA treatment, however, can restore only the related gene expression of ER stress and UPR but not the psychiatric disorder. Therefore, the early (5 min after DAI) administration of 4-PBA might be a therapeutic approach for blocking the ER stress/UPR-induced cell death and anxiety disorder after DAI.


Assuntos
Transtornos de Ansiedade/etiologia , Lesão Axonal Difusa/complicações , Lesão Axonal Difusa/fisiopatologia , Estresse do Retículo Endoplasmático/fisiologia , Fenilbutiratos/farmacologia , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Fármacos Neuroprotetores/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia
17.
Cell Mol Life Sci ; 75(22): 4207-4222, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29938386

RESUMO

Axonal outgrowth and guidance require numerous extracellular cues and intracellular mediators that transduce signals in the growth cone to regulate cytoskeletal dynamics. However, the way in which cytoskeletal effectors respond to these signals remains elusive. Here, we demonstrate that Porf-2, a neuron-expressed RhoGTPase-activating protein, plays an essential role in the inhibition of initial axon growth by restricting the expansion of the growth cone in a cell-autonomous manner. Furthermore, the EphB1 receptor is identified as an upstream controller that binds and regulates Porf-2 specifically upon extracellular ephrin-B stimulation. The activated EphB forward signal deactivates Rac1 through the GAP domain of Porf-2, which inhibits growth cone formation and brakes axon growth. Our results therefore provide a novel GAP that regulates axon growth and braking sequentially through Eph receptor-independent and Eph receptor-dependent pathways.


Assuntos
Axônios/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Receptor EphB1/metabolismo , Transdução de Sinais , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Células Cultivadas , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/fisiologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Morfogênese , Domínios Proteicos
18.
Neuropharmacology ; 137: 33-49, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29709341

RESUMO

Optic nerve injury is a leading cause of irreversible visual impairment worldwide and can even cause blindness. Excessive activation of astrocytes has negative effects on the repair and recovery of retinal ganglion cells following optic nerve injury. However, the molecular and cellular mechanisms underlying astrocyte activation after optic nerve injury remain largely unknown. In the present study, we explored the effects of microRNA-21 (miR-21) on axon regeneration and flash visual evoked potential (F-VEP) and the underlying mechanisms of these effects based on astrocyte activation in the rat model of optic nerve crush (ONC). To the best of our knowledge, this article is the first to report that inhibition of miR-21 enhances axonal regeneration and promotes functional recovery in F-VEP in the rat model of ONC. Furthermore, inhibition of miR-21 attenuates excessive astrocyte activation and glial scar formation, thereby promoting axonal regeneration by regulating the epidermal growth factor receptor (EGFR) pathway. In addition, we observed that the expression of tissue inhibitor of metalloproteinase-3, a target gene of miR-21, was inhibited during this process. Taken together, these findings demonstrate that inhibition of miR-21 regulates the EGFR pathway, ameliorating excessive astrocyte activation and glial scar progression and promoting axonal regeneration and alleviating impairment in F-VEP function in a model of ONC. This study's results suggest that miR-21 may represent a therapeutic target for optic nerve injury.


Assuntos
Astrócitos/metabolismo , Axônios/metabolismo , MicroRNAs/antagonistas & inibidores , Traumatismos do Nervo Óptico/metabolismo , Nervo Óptico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Axônios/efeitos dos fármacos , Axônios/patologia , Células Cultivadas , Cicatriz/tratamento farmacológico , Cicatriz/metabolismo , Cicatriz/patologia , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Potenciais Evocados Visuais/efeitos dos fármacos , Masculino , MicroRNAs/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Fármacos Neuroprotetores/farmacologia , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Distribuição Aleatória , Ratos Sprague-Dawley
19.
J Neurooncol ; 137(2): 395-407, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29294230

RESUMO

Previous study revealed that higher expression of transforming growth factor beta induced (TGFBI) is correlated to poorer cancer-specific survival and higher proportion of tumor necrosis and Fuhrman grades III and IV in clear cell renal cell carcinomas. However, the relationships between TGFBI expression and malignant phenotypes of gliomas remain unclear. We downloaded and analyzed data from seven GEO datasets (GSE68848, GSE4290, GSE13041, GSE4271, GSE83300, GSE34824 and GSE84010), the TCGA database and the REMBRANDT database to investigate whether TGFBI could be a biomarker of glioma. From microarray data (GSE68848, GSE4290) and RNA-seq data (TCGA), TGFBI expression levels were observed to correlate positively with pathological grade, and TGFBI expression levels were significantly higher in gliomas than in normal brain tissues. Furthermore, in GSE13041, GSE4271 and the TCGA cohort, TGFBI expression in the mesenchymal (Mes) subtype high-grade glioma (HGG) was significantly higher than that in the proneural subtype. Kaplan-Meier survival analysis of GBM patients in the GSE83300 dataset, REMBRANDT and TCGA cohort revealed that patients in the top 50% TGFBI expression group survived for markedly shorter periods than those in the bottom 50%. Analysis of grade III gliomas showed that the median survival time was significantly shorter in the TGFBI high expression group than in the TGFBI low expression group. In addition, we found that TGFBI expression levels might relate to several classical molecular characterizations of glioma, such as, IDH mutation, TP53 mutation, EGFR amplification, etc. These results suggest that TGFBI expression positively correlates with glioma pathological grades and that TGFBI is a potential signature gene for Mes subtype HGG and a potential prognostic molecule.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Glioma/mortalidade , Glioma/patologia , Humanos , Análise em Microsséries , Necrose/genética , Necrose/metabolismo , Gradação de Tumores
20.
Neuroscience ; 367: 189-199, 2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29113926

RESUMO

Traumatic brain injury (TBI) is a public health problem that causes high mortality and disability worldwide. Secondary brain damage from this type of injury may cause brain edema, blood-brain barrier destruction, and neurological dysfunction. MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level and play vital roles in maintaining and regulating physiological function. Notably, studies suggest that miRNA levels are altered in the cerebral cortex and hippocampus of rats and mice after TBI. These miRNAs exhibit promoting or inhibiting effects on the formation of secondary brain damage, such as promotion of neuron regeneration and apoptosis, alleviation of leakage across the blood-brain barrier (BBB), disruption of intracellular transport, and decreasing the inflammatory response. miRNA levels are also altered in the blood and cerebral spinal fluid (CSF) of humans with TBI. Some special miRNAs in blood were used in clinical trials for TBI diagnosis and prognosis prediction. Treatment with miRNA agomirs or antagomirs alleviated the lesion volume and improved neurological deficits post-injury. We review the current progress of miRNA studies in TBI patients and animal models and identify the prospects and difficulties involved in the clinical applications of miRNAs.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/metabolismo , MicroRNAs/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...